QLCS Mesovortex Warning System Reference Sheets

NWS Central Region Tornado Warning Improvement Project

QLCS Mesovortex Warning System

- 1. Use Three Ingredients Method to anticipate areas where mesovortex genesis is likely over next 30-45 minutes
- 2. Identify presence of Confidence Builders and Nudgers which indicate an increased likelihood for tornadoes
- Determine the number and quality of Confidence Builders and Nudgers to issue heightened warning products
- 4. Draw an effective polygon to capture motion and evolution of key features over next 30-45 minutes

Three Ingredients Method

- System cold pool and ambient low-level shear nearly balanced or slightly shear dominant and
- 2. 0-3 km line-normal bulk shear magnitude_> 30 kts and
- Rear-inflow jet (RIJ) or enhanced outflow causes surge or bow within a QLCS

General Rules of Thumb for Warning Types

Once the three Ingredients are met sum up number of Confidence Builders and Nudgers and use chart below to determine warning type:

Note: Use quality and persistence of Confidence Builders and Nudgers to tweak confidence up or down in overlap regions.

Descending RIJ/reflectivity drop Enhancing surge/bow Line break Paired front/rear inflow notch UDCZ entry point Front reflectivity nub Boundary ingestion Tight/strong mesovortex with $V_r \ge 25$ kt Contracting bookend vortex with $V_r \ge 25$ kt Confirmed tornado/tornadic debris signature (TDS) Reflectivity tag intersecting a surge/bow 0 to 3 km MLCAPE ≥ 40 J/kg

Note: Confidence Builders carry more weight than Nudgers!

Cell merger or reflectivity spike near surge/bow

History of tornadoes (includes prior TDSs)

Three Ingredients Method for Mesovortex Genesis and Intensification

(1)

Locate Balanced and Slightly Shear <u>Dominant Regimes</u>

- A. Locate the Updraft Downdraft Convergence Zone (UDCZ) using 0.5° SRM, V, and SW products
- B. Compare location of UDCZ to updraft region in 0.5° Z product:
 - Shear Dominant UDCZ within or behind updraft towers
 - Balanced UDCZ on immediate front edge of updraft towers

Locate Bows and Local Surges

- A. A rear inflow jet or enhanced outflow are likely candidates to cause a local surge or bow
 - Look for MARC signatures in the 8-16 kft layer as a precursor to bows
 - Low level V, SRM, and SW products often reveal developing local surges quicker than Z product

When all three ingredients are co-located within a QLCS, there is an increased likelihood for mesovortex genesis and intensification, along with increased tornado potential.

2

Locate Regions where Line-Normal 0-3 km Bulk Shear is ≥ 30 Knots

- Determine 0-3 km bulk shear just ahead of the QLCS (must be
 ≥ 30 knots for ingredient to be fulfilled)
- 3. Use equation below to determine line-normal bulk shear values as they relate to the UDCZ

Tip: Local surges and bows often change the orientation of the UDCZ.

Tornado Warning Confidence Builders

Reflectivity Tag Intersecting a Surge/Bow

0-3 km MLCAPE ≥ 40 J/kg

Cell Merger/Reflectivity Spiking Near Surge/Bow

History of Tornadoes (Includes prior TDSs)

Tornado Warning Nudgers